Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom.

نویسندگان

  • Z Lippman
  • S D Tanksley
چکیده

In an effort to determine the genetic basis of exceptionally large tomato fruits, QTL analysis was performed on a population derived from a cross between the wild species Lycopersicon pimpinellifolium (average fruit weight, 1 g) and the L. esculentum cultivar var. Giant Heirloom, which bears fruit in excess of 1000 g. QTL analysis revealed that the majority (67%) of phenotypic variation in fruit size could be attributed to six major loci localized on chromosomes 1-3 and 11. None of the QTL map to novel regions of the genome-all have been reported in previous studies involving moderately sized tomatoes. This result suggests that no major QTL beyond those already reported were involved in the evolution of extremely large fruit. However, this is the first time that all six QTL have emerged in a single population, suggesting that exceptionally large-fruited varieties, such as Giant Heirloom, are the result of a novel combination of preexisting QTL alleles. One of the detected QTL, fw2.2, has been cloned and exerts its effect on fruit size through global control of cell division early in carpel/fruit development. However, the most significant QTL detected in this study (fw11.3, lcn11.1) maps to the bottom of chromosome 11 and seems to exert its effect on fruit size through control of carpel/locule number. A second major locus, also affecting carpel number (and hence fruit size), was mapped to chromosome 2 (fw2.1, lcn2.1). We propose that these two carpel number QTL correspond to the loci described by early classical geneticists as fasciated (f) and locule number (lc), respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species

Volatile organic compounds (VOCs) are major determinants of fruit flavor, a primary objective in tomato breeding. A recombinant inbred line (RIL) population consisting of 169 lines derived from a cross between Solanum lycopersicum and a red-fruited wild tomato species Solanum pimpinellifolium accession (SP) was characterized for VOCs in three different seasons. Correlation and hierarchical clus...

متن کامل

Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex.

The domestication of the tomato Solanum lycopersicum and associated selective pressures eventually led to the large-fruited varieties cultivated today. S. lycopersicum varieties are generally red-fruited, but display considerable variance in fruit colour intensity, shape, and quality. The increase in productivity on cultivation is, however, somewhat offset by the narrowing of the crops genetic ...

متن کامل

Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon).

Eight wild tomato species are native to western South America and one to the Galapagos Islands. Different classifications of tomatoes have been based on morphological or biological criteria. Our primary goal was to examine the phylogenetic relationships of all nine wild tomato species and closely related outgroups, with a concentration on the most widespread and variable tomato species Solanum ...

متن کامل

Diallel analysis of production traits among domestic, exotic and mutant germplasms of Lycopersicon.

The effects of wild germplasm on tomato fruit shelf life have not yet been completely evaluated. Three different genotypes of Lycopersicon esculentum (a cultivated variety, a homozygote for nor and a homozygote for rin), LA1385 of L. esculentum var. cerasiforme, LA722 of L. pimpinellifolium, and 10 diallel hybrids were assayed. Mean values of fruit shelf life, weight, shape, and mean number of ...

متن کامل

High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements.

The locus sun on the short arm of tomato chromosome 7 controls morphology of the fruit. Alleles from wild relatives impart a round shape, while alleles from certain cultivated varieties impart an oval shape typical of roma-type tomatoes. We fine mapped the locus in two populations and investigated the genome organization of the region spanning and flanking sun. The first high-resolution genetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 158 1  شماره 

صفحات  -

تاریخ انتشار 2001